Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces
نویسنده
چکیده مقاله:
This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$
منابع مشابه
best proximity pair and coincidence point theorems for nonexpansive set-valued maps in hilbert spaces
this paper is concerned with the best proximity pair problem in hilbert spaces. given two subsets $a$ and $b$ of a hilbert space $h$ and the set-valued maps $f:a o 2^ b$ and $g:a_0 o 2^{a_0}$, where $a_0={xin a: |x-y|=d(a,b)~~~mbox{for some}~~~ yin b}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in a$ such that $$d(g(x_0),f(x_0))=d(a,b).$$
متن کاملCoincidence Point, Best Approximation, and Best Proximity Theorems for Condensing Set-Valued Maps in Hyperconvex Metric Spaces
The best approximation problem in a hyperconvex metric space consists of finding conditions for given set-valued mappings F andG and a setX such that there is a point x0 ∈ X satisfying d G x0 , F x0 ≤ d x, F x0 for x ∈ X. When G I, the identity mapping, and when the set X is compact, best approximation theorems for mappings in hyperconvex metric spaces are given for the single-valued case in 1–...
متن کاملCoupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
متن کاملBest proximity point theorems in 1/2−modular metric spaces
In this paper, first we introduce the notion of $frac{1}{2}$-modular metric spaces and weak $(alpha,Theta)$-$omega$-contractions in this spaces and we establish some results of best proximity points. Finally, as consequences of these theorems, we derive best proximity point theorems in modular metric spaces endowed with a graph and in partially ordered metric spaces. We present an ex...
متن کاملNon-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 37 شماره No. 4
صفحات 229- 234
تاریخ انتشار 2011-12-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023